Diffeological gluing of vector pseudo-bundles and pseudo-metrics on them
نویسندگان
چکیده
منابع مشابه
Splitting and gluing constructions for geodesically equivalent pseudo-Riemannian metrics
Two metrics g and ḡ are geodesically equivalent, if they share the same (unparameterized) geodesics. We introduce two constructions that allow one to reduce many natural problems related to geodesically equivalent metrics, such as the classification of local normal forms and the Lie problem (the description of projective vector fields), to the case when the (1, 1)−tensor Gj := g ik ḡkj has one ...
متن کاملSplitting and Gluing Lemmas for Geodesically Equivalent Pseudo-riemannian Metrics
Two metrics g and ḡ are geodesically equivalent if they share the same (unparameterized) geodesics. We introduce two constructions that allow one to reduce many natural problems related to geodesically equivalent metrics, such as the classification of local normal forms and the Lie problem (the description of projective vector fields), to the case when the (1, 1)−tensor Gj := g ik ḡkj has one r...
متن کاملCanonical metrics on stable vector bundles
The problem of constructing moduli space of vector bundles over a projective manifold has attracted many mathematicians for decades. In mid 60’s Mumford first constructed the moduli space of vector bundles over algebraic curves via his celebrated GIT machinery. Later, in early 80’s Atiyah and Bott found an infinite dimensional symplectic quotient description of this moduli space. Since then, we...
متن کاملCompatible and almost compatible pseudo-Riemannian metrics
In this paper, notions of compatible and almost compatible Riemannian and pseudo-Riemannian metrics, which are motivated by the theory of compatible (local and nonlocal) Poisson structures of hydrodynamic type and generalize the notion of flat pencil of metrics (this notion plays an important role in the theory of integrable systems of hydrodynamic type and the Dubrovin theory of Frobenius mani...
متن کاملA family of pseudo metrics on B and its application
We define a family of pseudo metrics on B3 and study elementary properties of the associated metric spaces. As an application we prove that, for any a > 0 and for any countable-to-one function f from (S2, dE) to [0, a], the set NMf = {x ∈ S2 | ∃y ∈ S2 such that f(x) − f(y) > ndE(x, y)} is uncountable for all n ∈ N, where dE is the standard Euclidean metric on S 2 = {(x, y, z) ∈ R3 | x2 + y2 + z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2017
ISSN: 0166-8641
DOI: 10.1016/j.topol.2017.02.002